△图1 “创新X”首发星——空间新技术试验卫星(SATech-01)
△图2 SUTRI在2022年9月29日观测到的太阳活动图(图片由SUTRI科学团队提供)
△图3 SUTRI在2022年9月23日观测到的一次太阳爆发事件(图片由SUTRI科学团队提供)
02
高能爆发探索者(HEBS)捕获到迄今为止最亮伽马暴
由中科院高能物理研究所研制的高能爆发探索者(HEBS)于北京时间2022年10月9日21时17分,与我国慧眼卫星和高海拔宇宙线观测站同时探测到迄今最亮的伽马射线暴(编号为GRB 221009A)。根据HEBS的精确测量结果,该伽马暴比以往人类观测到的最亮伽马射线暴还亮10倍以上。由于该伽马射线暴的亮度极高,国际上绝大部分探测设备均发生了严重的数据饱和丢失、脉冲堆积等仪器效应,难以获得精确测量结果。HEBS凭借创新的探测器设计以及新颖的高纬度观测模式设置,探测器经受住了高计数率的考验,获得了高时间分辨率的光变曲线,以及10千电子伏至5兆电子伏的宽能段能谱。HEBS极为宝贵的精确测量结果对于揭示伽马射线暴的起源和辐射机制具有重要意义。
国家天文台和上海技术物理研究所研制的EP探路者龙虾眼X射线成像仪(LEIA)于10月12日也成功对这一伽马射线暴开展了观测,探测到了伽马射线暴X射线余辉。这也是国际上首次用龙虾眼型X射线望远镜探测到伽马射线暴。
△图4 高能爆发探索者(HEBS)发现并精确测量迄今最亮的伽马射线暴,打破多项纪录。
03
国产量子磁力仪首次空间应用并获得全球磁场图
由中国科学院国家空间科学中心和沈阳自动化研究所联合研制的国产量子磁力仪(CPT)及伸展臂,可实现全球地磁矢量和标量高精度测量。2022年11月7日,多级套筒式无磁伸展臂顺利展开,将各传感器探头伸出约4.35米距离,处于伸展臂顶端的CPT原子/量子磁力仪探头、AMR磁阻磁力仪探头、NST星敏感器获取了有效探测数据,首次在轨验证了磁场矢量和姿态一体化同步探测技术,磁测量噪声峰峰值<0.1nT,实现了国产量子磁力仪的首次空间验证与应用。
△图5 CPT磁测系统“多级套筒式无磁伸展臂”地面展开测试(图片由沈自所、空间中心和卫星团队提供)
△图6 量子磁力仪首张全球磁场勘测图(图片由空间中心太阳活动与空间天气重点实验室提供)
△图7 NST星敏感器相对于卫星本体的姿态数据(图片由空间中心和中科新伦琴NST星敏团队提供)
04
空间载荷、平台新技术成果丰富
由中国科学院长春光学精密机械与物理研究所空间新技术部研制的多功能一体化相机,首次采用基于共口径多出瞳光学系统新体制,在轨实现集可见光、长波红外、彩色微光于一体的空间光学遥感观测。相机于2022年9月24日开机,成功取得首张170km×42km大幅宽地面遥感图像(如图8),探索了单台相机即可同时实现多谱段多模态遥感成像的新模式,为我国未来高集成度一体化空间光学遥感载荷发展提供了技术储备。
△图8 多功能一体化相机对地宽幅遥感成像图(图片由长春光学精密机械与物理研究所提供)
由中国科学院半导体研究所、自动化研究所、微小卫星创新研究院及浙江大学航空航天学院空天信息技术研究所联合研制的异构多核智能处理单元也取得了首批成果。半导体所的低功耗边缘计算型智能遥感视觉芯片,实现了遥感图像的高速智能化目标检测;自动化所的通用智能系统验证了基于高速交换网络的异构多处理器模块化、弹性化硬件架构;浙江大学的国产AI系统装载了细胞分割算法和飞机识别算法,数据结果与地面孪生系统数据一致,在功耗10瓦条件下算力达到22Tops,验证了国产AI器件的在轨智能图像处理能力。
△图9 边缘计算型遥感视觉芯片检测遥感目标示意图(图片由中科院半导体所提供)
中科院微小卫星创新院的可展收式辐射器成功在轨实现首次应用,辐射器执行机构已顺利完成六十余次展开和收拢动作,连续五轨动态试验结果(如图10)表明环路热管-可展收式辐射器集成系统在负载工作时段启动性能良好,辐射器连续展开-收拢可实现散热能力在轨大范围调控。
△图10 环路热管-可展收式辐射器集成系统连续五轨智能热控测试结果
国家空间科学中心研制的空间元器件辐射效应试验平台载荷开机运行良好,搭载的元器件在测试期间均工作正常。
“科学与技术成果的涌现体现了我们对这颗卫星‘创新X,创新无极限’的定位,开创了新技术众筹模式的先河。”“力箭一号”工程副总师兼卫星系统总师张永合说,“这些新载荷、新技术产品都是各参与方自主投入的,不少是从0到1的创新,通过试验星将创新技术快速集成并飞行验证,可以加快核心关键技术从基础研究到在轨应用的成果转化。”
2022年7月27日12时12分,由中国科学院自主研制的迄今我国最大固体运载火箭“力箭一号”(ZK-1A)在酒泉卫星发射中心成功发射,采用“一箭六星”的方式,将“创新X”系列首发星——空间新技术试验卫星等六颗卫星送入预定轨道。2022年9月5日,空间新技术试验卫星(SATech-01)发布了首批科学成果,包括龙虾眼X射线成像仪(LEIA)的国际首幅宽视场X射线聚焦成像天图,伽马射线暴载荷(HEBS)的首个伽马暴等。
作为我国“创新X”系列的首发星,未来一段时间,空间新技术试验卫星搭载的几种新型推进系统等载荷也将开展在轨试验,卫星上的四个科学载荷也已进入常规化观测,陆续将会获得更多科学和技术成果。
(总台央视记者 帅俊全 褚尔嘉)
星系:黑洞你不讲武德!****** 近日,一个天文学家团队 发现了一个独特的黑洞 这个黑洞正向另一个星系 喷出44万光年长的“口水” 这一消息登上热搜 不少网友表示疑惑 黑洞不是可以吞噬一切吗? 怎么还能“吐口水”? 椭圆星系中形成恒星稀少之谜 如果说恒星是宇宙中的居民,那么星系就是宇宙中的村落或城市。根据不同的形态,星系主要被分成三类:椭圆星系、螺旋星系和不规则星系,螺旋体有大量的冷气体和尘埃,并有光学上看起来像蓝色的旋臂。在螺旋星系中,平均每年有一颗类似太阳的恒星形成。另一方面,椭圆星系的颜色是黄色的,缺乏像旋臂那样的独特特征。 图源:百度百科 椭圆星系 图源:百度百科 螺旋星系 就像人口并非均匀地分布于地球表面一样,这些宇宙城市和村落也是不均匀分布的。在螺旋星系中,平均每年都会产生一颗类似太阳的恒星。但在今天看到的椭圆星系中,数十亿年来没有产生任何恒星。为何在椭圆星系中恒星的产生会如此罕见?这对科学家来说一直是一个谜。 “吐口水”的黑洞是“凶手”? 一个天文学家小组在公民科学家的帮助下发现了这个独特的黑洞,它正在向另一个星系喷射火热的喷流,看起来像是在“吐口水”,这些喷流在星系中以极高的速度进行,耗尽了未来恒星形成所需要的冷气体和尘埃。 图像来源:Ananda Hota博士,GMRT,CFHT,MeerKAT 这表明,椭圆星系中形成恒星非常稀少的罪魁祸首或许就是这些大吐口水的黑洞。 这个黑洞位于RAD12星系中,该星系距离地球约10亿光年。RAD12中的黑洞似乎只向一个邻近的星系喷出了射流,这个星系被命名为RAD12-B。在所有情况下,喷流都是成对喷出的,以相对论的速度向相反的方向运动。为什么只看到一个喷流来自RAD12,这对天文学家来说仍然是一个谜。 黑洞还能喷东西?! 编号Sh2-101的郁金香星云 图片来源及版权:Peter Kohlmann 这片发出微红色光芒的星云 俗名为郁金香星云 星际气体和尘埃组成了 红色的花瓣 它们受到附近年轻恒星的 紫外光照耀而发光 花朵右侧那片弯曲的小叶子 就是黑洞喷流冲击形成的杰作 事件视界望远镜解析的半人马座A星系中央黑洞的中心喷流 图片来源:Radboud University; CSIRO/ATNF/I.Feain et al., R.Morganti et al., N.Junkes et al.; ESO/WFI; MPIfR/ESO/APEX/A. Weiss et al.; NASA/CXC/CfA/R. Kraft et al.; TANAMI/C. Mueller et al.; EHT/M. Janssen et al. 黑洞因贪吃而闻名,但它们却不会将落向它们的东西全都吃掉。一小部分物质会以强烈热气体喷流的形式射出,并对周围环境造成破坏,这些热气体被称作等离子体。一路上,这种等离子体以某种方式获取足够的能量来强烈地发光,并沿着黑洞的旋转轴形成两个亮柱。科学家们一直在争论,喷流中的这一过程究竟是在哪里发生和如何发生的。 黑洞的喷流是与黑洞周围的气体紧密相关的。要想产生喷流,首先黑洞周围要有足够的气体,这些气体形成一个气体盘,最后如果条件合适的话,那么部分的气体会在掉入黑洞的过程中,掉入到黑洞之前,沿着黑洞的转轴方向喷射出去,形成喷流。所以说喷流只是在特定情况下产生的,在宇宙当中,只有10%左右的超大质量黑洞才会产生黑洞喷流。 END 资料来源:中国国家天文、北京天文馆、国家空间科学中心、CNBeta、新疆科技馆 整理:董小娴 (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() ![]() 彩虹多多地图 |